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Abstract: Imaging-guided near infrared diffuse optical tomography (DOT) has demonstrated 
a great potential as an adjunct modality for differentiation of malignant and benign breast 
lesions and for monitoring treatment response of breast cancers. However, diffused light 
measurements are sensitive to artifacts caused by outliers and errors in measurements due to 
probe-tissue coupling, patient and probe motions, and tissue heterogeneity. In general, pre-
processing of the measurements is needed by experienced users to manually remove these 
outliers and therefore reduce imaging artifacts. An automated method of outlier removal, data 
selection, and filtering for diffuse optical tomography is introduced in this manuscript. This 
method consists of multiple steps to first combine several data sets collected from the same 
patient at contralateral normal breast and form a single robust reference data set using 
statistical tests and linear fitting of the measurements. The second step improves the 
perturbation measurements by filtering out outliers from the lesion site measurements using 
model based analysis. The results of 20 malignant and benign cases show similar performance 
between manual data processing and automated processing and improvement in tissue 
characterization of malignant to benign ratio by about 27%. 
©2016 Optical Society of America 
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1. Introduction 
According to the American Cancer Society, breast cancer is estimated to be the most common 
type of cancer among women with more than 246000 new cases and approximately 40,000 
deaths projected in the United States in 2016 [1]. Mammography, ultrasound (US) and 
magnetic resonance imaging (MRI), are widely used to detect and diagnose breast lesions. 
Mammography is the most clinically used imaging modality for breast cancer screening, but it 
suffers from significant limitations such as relatively low sensitivity in early cancer diagnosis, 
reduced sensitivity in women with dense breasts, and low specificity that results in a large 
number of unnecessary biopsies [2]. A new study demonstrates comparable results for breast 
cancer detection rate between US and mammography. However, US still lacks sensitivity and 
specificity with a large number of false positive cases reported [3]. Although MRI has a 
higher sensitivity in breast cancer detection, the low cancer detection yields in the general 
screening population and high costs of MRI prohibit its applicability as a screening tool [2]. 
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Diffuse optical tomography (DOT) is a noninvasive functional imaging modality that 
utilizes near-infrared (NIR) light to probe tissue optical properties. Minimal light absorption 
in the NIR wavelength range allows for several centimeters of light penetration in soft tissue 
such as breast and brain and facilitates probing lesions deep in the tissue. Image 
reconstruction is performed using reflected or transmitted light at the tissue surface [4–7]. 
NIR diffuse optical tomography has emerged as a promising modality to detect and monitor 
functional changes related to blood flow and tumor angiogenesis. Using multi-wavelength 
data acquisition, it is possible to quantify tissue characteristics such as oxygenated, 
deoxygenated, and total hemoglobin (HbO2, HbR, and HbT) concentrations as well as 
hemoglobin oxygen saturation (SO2) and lipid and water concentrations [8,9]. Clinical 
studies of female breasts have demonstrated higher HbT in the malignant lesions compared to 
both healthy tissue and benign lesions [8,10,12,14,15]. 

High sensitivity and cost effectiveness of DOT make it an ideal alternative for 
conventional breast imaging modalities. Currently DOT is not widely used in clinical settings 
mainly due to the low spatial resolution and lesion location uncertainty caused by intense 
light scattering in soft tissue. However, DOT guided by mammography, US, and MRI [10–
13] have overcome lesion location uncertainty and improved the light quantification accuracy, 
and have been demonstrated as promising complementary methods to the existing imaging 
modalities. Ultrasound-guided DOT system and technique has been developed by our group 
and clinical results have demonstrated its potential in differentiating malignant and benign 
breast lesions and reducing the need for unnecessary benign biopsies [10,15]. In this 
approach, DOT is used to characterize the US detected lesions and to improve the diagnostic 
accuracy of US by providing complementary optical contrast. In a recent study, we have 
demonstrated that when US detection and diagnosis used together with optical hemoglobin 
contrast, the sensitivity of breast cancer detection and diagnosis has researched 96.6-100% 
[10]. 

The path toward commercialization of imaging guided DOT techniques depends upon the 
improvement of robustness and user-friendliness of this technique in hardware and software. 
Several groups have investigated various approaches to improve the robustness of the 
hardware, system calibration, data selection, target localization, and image reconstruction 
[16–20]. Reducing user interaction via automated processing of calibration and data selection 
is an important step toward clinical applicability of DOT. 

In US-guided DOT or other hand-held DOT operation, a hand-held probe is placed on top 
of a patient’s breast while the patient is in a supine position [21]. Movements of patient or 
operator’s hand could cause a bad coupling between the light guides and the breast which 
may result in some outliers in measurements. In other imaging guided DOT approaches, the 
probe may be fixed, however, the bad coupling between tissue and light guides can occur 
which may result in outlier measurements. Additionally, tissue heterogeneity can cause 
measurement errors at some source-detector pairs. Recovered background and lesion optical 
properties highly depend on the boundary measurements of light propagating through the 
tissue underneath and any errors in these measurements could cause inaccuracy in fitted 
background and reconstructed lesion optical properties [22,23]. In this study, we introduce an 
automated outlier removal, data selection, and perturbation filtering method for imaging-
guided DOT to improve its robustness in breast imaging. This method utilizes multiple sets of 
reference measurements acquired at a normal contralateral breast in one imaging session to 
produce a robust set of reference measurements. Then, the lesion measurement set is 
subtracted and scaled by this robust reference to form the normalized perturbation of the 
scattered field. Next, the perturbation was filtered for outliers and measurement errors based 
on analysis from simulations. Finally, the filtered perturbation is used for reconstruction of 
absorption maps and total hemoglobin distributions to characterize malignant and benign 
breast masses. The method of combining multiple measurements to perform statistical test for 
noise and outlier removal and saturation data rejection can be applied to other methods of 
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imaging-guided DOT, such as mammogram or MRI guided diffuse optical tomography with 
some modifications. 

2. Data set and system 

2.1 Patients 

US-guided DOT is used to characterize 10 malignant and 10 benign lesions of 20 patients. 
The study protocol was approved by the local internal review board (IRB). Signed informed 
consent was obtained from all patients and the study was compliant with the Health Insurance 
Portability and Accountability Act. For each patient, US images and optical measurements 
were simultaneously acquired before biopsy at the lesion site and at the normal contralateral 
breast of the same quadrant as the lesion which is used as reference. Mammograms, US 
images before the NIR scan were reviewed by attending radiologists and all contralateral 
measurements were taken at normal areas based on the available information [10]. 

2.2 System 

The DOT system used in this study consisted of four laser diodes of wavelengths 740, 780, 
808 and 830 nm. The outputs of the diodes were multiplexed by two optical switches to nine 
positions and were then coupled to a hand-held probe through optical fibers. Ten optical light 
guides coupled diffused light reflected from tissue to 10 photomultiplier tubes (PMT). The 
outputs of the laser diodes were amplitude modulated at 140 MHz and the detector outputs 
were demodulated to 20 kHz. The entire data acquisition took approximately 3 to 4 seconds, 
which was fast enough to repeat several times during one imaging session and obtain multiple 
measurements from each patient at the lesion site and the contralateral normal breast at the 
same quadrant as the lesion, referenced as reference measurement in the following text. For 
each patient, we typically collect 4 to 6 sets of measurements from the contralateral breast at 
slightly different locations. Each set consists of 3 consecutive measurements which takes 
around 4 to 5 seconds. The separation between each set of measurements varies from few 
seconds to tens of seconds because of hand-held operation. Therefore, a total 12 to 18 
measurements may take about one to two minutes. A commercially available US transducer 
located in the middle of the hand-held probe of 9 cm diameter was used to acquire US images 
and optical source fibers and light guides distributed at the periphery were used to collect the 
diffused light from tissue [10]. 

3. Methods 
Fast data acquisition of US-guided DOT system allows the collection of several data sets 
during one imaging session. The data contains multiple data sets from both lesion and 
contralateral reference breast. A novel automated method for outlier removal and data 
selection is introduced to eliminate the effect of inaccurate measurements. The block diagram 
of the procedures is given in Fig. 1. 
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Fig. 1. Block diagram of the automated outlier removal and data selection method. In the block 
diagram MNR stands for maximum normed residual and IRLS stands for iterative reweighted 
least square. 

Multiple sets of reference measurements were used to form a single high quality data set. 
First, an outlier removal procedure is incorporated to eliminate the highly inaccurate 
measurements with a criterion based on the distribution of data collected at each source-
detector pair. Second, a piece-linear fitting is used to reject the source-detector pair 
measurements obtained from the saturated PMTs. Third, an iterative fitting of residue of the 
remaining data is calculated to further eliminate inaccurate measurements based on the 
linearity of fitted results of the reference measurements of all source-detector pairs. Fourth, a 
least-square error method is used to form the most accurate reference data set from the 
remaining measurements. Finally, a perturbation filtering based on analysis obtained from the 
semi-infinite analytical solution of light propagation in tissue [24] is utilized to form accurate 
perturbation set that is more robust to outlier and inaccurate measurements. The 
aforementioned steps are described in details below. 

3.1 Outlier rejection in reference measurements 

Each data set contains measurements from s sources and d detectors with the total number of 
m = s × d measurements. The system used in this study provides 90 source-detector 
measurements per data set. A total of k data sets of total k × s × d measurements collected at 
the reference site were used for selecting a best reference data set. In general, k is in the range 
of 12 to 18. Since we are using a frequency domain DOT system, each data set consists of 
amplitude and phase data. The maximum normed residual (MNR) is a widely used statistical 
test to address the problem of outlier rejection [25] that has shown outstanding performance 
in both linear and nonlinear data [26]. The MNR test is based on the largest absolute 
deviation from the sample mean in units of the sample standard deviation. This test is applied 
to remove outliers for each source-detector pair of total k data sets. The outlier measurement 
is expunged from each source-detector pair data set based on the following criterion. An 
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upper critical value of the t-distribution with k−2 degrees of freedom is calculated, and a 
threshold is obtained based on Eq. (1). 
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In this equation GThreshold(i) is the outlier threshold for ith source-detector pair, tα/(2k),k-2(i) 
denotes the upper critical value of the t-distribution with k−2 degrees of freedom, and α 
represents the level of significance which determines the strictness of outlier removal 
procedure. By changing this value between 0 and 1, the total number of the outliers and the 
significance of these outliers removed from the database have changed. To find the optimal 
value of α, the outlier removal process is performed for different significance level ranging 
from 0.01 to 0.5 and the optimal value is set to 0.05 based on visual examination of the 
removed outliers. This optimal value is selected in a way that the test only removes the 
significant outlier data. A G value is determined as an absolute deviation of the data point 
from mean value of the measurements and normalized by standard deviation. The data point 
corresponding to maximum G value which has absolute deviation higher than the threshold is 
considered as an outlier and removed from the data set. The test is iterated until no further 
outliers are detected beyond the threshold. This test is done for both amplitude and phase 
measurements separately. The details of this method can be found in [27,28]. If a data point in 
either amplitude or phase measurements is considered as an outlier, both amplitude and phase 
measurements are removed from the data sets. 

3.2 Saturation and noise data rejection 

In addition to outliers in the reference measurements, detector saturation is another common 
problem in DOT that can happen as a result of higher light intensity detected at a shorter 
source detector distance. Each PMT may saturate at a different light intensity level. A semi-
infinite analytic solution predicts that the logarithm of the detected amplitude for each source-
detector pair multiplied by square distance of that specific source-detector pair, referred as 
logarithmic amplitude, should linearly decrease with the source-detector distance for 
homogeneous reference measurements. The phase measurement should increase linearly with 
the source-detector distance. A piece-linear fitting method is implemented for the amplitude 
measurements of all remaining source-detector pairs in the reference data after outlier 
rejection. In general, three sections of shorter source-detector distance, mid-range, and longer 
distance range were used. If a measured logarithmic amplitude at a shorter source-detector 
distance does not follow the linear profile plotted as a function of the source-detector 
separation in the mid and longer range, we can assume that the PMT is saturated at this 
detector distance. The measurements that fit the linear profile are kept for further processing. 
Additionally, the phase data corresponding to the saturated amplitude data are not reliable and 
are removed from both reference and lesion data sets. 

Besides the saturated measurements which usually happen for the source-detector pairs 
with shorter distances, there are measurements of source-detector pairs with longer distances 
which are dominated by the noise of the system and are not reliable. To improve the data set, 
any measurements of longer source detector pairs with amplitudes below the electronic noise 
of the system are considered as noisy measurements and expunged from the data. Since the 
corresponding phase data with amplitudes at noise level are not reliable and these data have 
also removed from the data. 

3.3 Iterative reweighted least square fitting 

The MNR test is based on each source detector measurements separately and it removes the 
outliers at each source-detector pair. At this stage, all remaining data sets after MNR and 
saturation data removal are inputted to an iterative reweighted least square (IRLS) method to 
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obtain an accurate linear fit with the minimum fitting residue for both log scaled amplitude 
and phase measurements as functions of source and detector separation. This method has 
given great results in different p-norm minimization problems ranging from compressive 
sensing to baseline correction in industrial settings [29,30]. 

As shown in Eq. (2) IRLS iteratively minimizes the bi-square weighted residual in the 
least-square sense [29]: 

 
2

1
1

( ) ( ) ( , ) .
m

n n
i

w i y i f iβ β β+
=

= −  (2) 

Here i is the index of the measurement, w is the bi-square weight function, y is the 
measurement value, β includes slope and intercept of the line fitted to the data and f(i,β) is the 
fitted measurement based on the current β . This method reduces the influence of large 
residuals in the fitted reference parameters and improves the fitted results. After the fitting for 
both logarithmic amplitude and phase is completed, the distance of each amplitude and phase 
measurement from the corresponding value on the fitted line of same source-detector distance 
is calculated. All the measurements with higher absolute residue compared to the threshold in 
either amplitude or phase measurements are selected as non-accurate measurements and 
removed from the data set. The absolute residue threshold of 0.5 has been empirically 
selected for both amplitude and phase based on trial and error from clinical data. Since the 
IRLS-based minimization is robust and less sensitive to noise bursts, it improves the 
robustness of the data set selection [30]. 

3.4 Compounded reference 

Even though accurately fitted lines for both log scaled amplitude and phase are obtained from 
the previous steps, there may still be more than one measurement for each remaining source-
detector separation. Now one amplitude and one phase measurement per source-detector pair 
need to be selected to form a single robust reference data set. Here, a least square method is 
utilized to select the measurements with minimum distance from the center of the distribution 
of remaining measurements for each source-detector pair. This processed is done separately 
on the remaining amplitude and phase data. Therefore, a final reference data set with high 
similarity to the fitted slope and intercept of outlier removed combination of all the reference 
data sets is achieved. This reference data set consists of the selected amplitude and phase 
measurements for the remaining source-detector pairs. This robust set of reference 
measurements is named as the compounded reference and is less sensitive to outliers, PMT 
saturation and noise. 

To visualize the effect of the proposed process, the amplitudes and phase profiles of one 
clinical case before and after preprocessing, as well as the final compound reference have 
been illustrated in Fig. 2. The preprocessing includes, outlier removal, saturation and noise 
rejection and iterative reweighted fitting with higher residue removal. 
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Fig. 2. Log scaled amplitude and phase profiles of reference data sets before (first column) and 
after preprocessing (second column) as well as final compound reference (third column). 
Saturated source-detector pairs have been marked with red rectangle in the amplitude part of 
the first column. 

3.5 Perturbation filtering 

The procedures described above provide a robust set of reference measurement. For 
reconstruction of lesion absorption map at each wavelength, perturbation is calculated by 
subtracting the compound reference from the lesion data as shown in Eq. (3), in which Al and 
Ar are amplitude and φl and φr are phase of each source-detector pair obtained at the lesion 
and compound reference, respectively. 
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the outliers may present in the perturbation data due to 1) measurements errors caused by 
movements of patient or operator’s hand as well as bad coupling between the light guides and 
the breast; and 2) heterogeneity of the background tissue and the lesion. Lesion measurements 
are expected to be more heterogeneous than the reference measurements because the 
heterogeneity is partially caused by the lesion and partially by the background tissue 
heterogeneity. Therefore, outlier removal procedures applied to reference measurements 
cannot be implemented to the lesion measurements. Instead, a filtering method is applied to 
the perturbation based on the constraints imposed on the phase difference between the lesion 
data and the reference data given in Eq. (3). These conditions are determined based on the 
predictions obtained from the semi-infinite analytical solution derived from diffusion 
approximation [24, 31]. 

Simulations were performed using different background optical properties for both 
reference and lesion breasts as well as different optical properties for lesions of different sizes 
located at different depths [32]. The simulations used the same probe geometry and the same 
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number of the sources and detectors as the experiments. Table 1 shows the range of the 
parameters used for simulations. The results show that the maximum phase difference 
between lesion and reference measurements of all source detector pairs for most scenarios 
listed in Table 1 are in the range of few degrees. For a 4 cm larger lesion of optical contrast of 
10 times higher than the background, the maximum phase difference is only 22 degrees. This 
implies that the maximum phase difference of none of the source detector pairs can exceed 90 
degrees even in extreme cases. This indicates that the cosine term in Eq. (3) should always be 
positive. Therefore, the real part of the perturbation cannot be less than −1 assuming that the 
amplitude measured from lesion Al is smaller than that of the amplitude measured at reference 
Ar due to a higher absorption of the lesion in general. Furthermore, the mean and the standard 
deviation of the imaginary part of the perturbation are calculated. If the imaginary part of a 
data point is farther than three standard deviations from the mean, it is considered an outlier. 
Any data points in the perturbation that do not meet these two criteria are rejected. This step 
removes outliers in the perturbation likely caused by measurement errors rather than 
heterogeneity of the lesion data. 

Table 1. Range of parameters used for analytical model and obtained maximum phase 
delay. 

Background μa Background μ's Lesion Δμa Lesion depth Lesion radius 

0.02 −0.08 (cm−1) 5 – 10 (cm−1) 0.05 – 0.2 (cm−1) 1.5- 3.5 (cm) 0.5-2 (cm) 

This normalized perturbation is used for reconstructing the absorption map at each 
wavelength. The total hemoglobin map was calculated from the four wavelength absorption 
data. The dual-zone mesh scheme is used for inversion [32]. Briefly, the imaging volume is 
segmented into two regions consisting of the lesion and the background regions. These two 
regions are identified by the co-registered ultrasound images. This method reduces the total 
number of voxels with unknown optical properties by using smaller mesh size for lesion 
region and a larger coarse mesh size for background. The conjugate gradient method is 
utilized for iterative optimization of the inverse problem. Patient results are calculated from 
the selected data based on this automated outlier removal and data selection procedures. 

4. Results 
To quantify the effectiveness of the proposed method, the results obtained from manually 
selected and processed data set were compared with the results obtained from the automated 
data processing method. The malignant versus benign classification was based on biopsy 
result which is the “gold” standard in current clinical practice. The manual selection was 
performed by a trained user to obtain the best outlier removal result. The absorption maps 
obtained at four optical wavelengths of benign and malignant examples are shown in Figs. 3 
and 4, respectively. The effect of outlier and bad measurements on the reconstructed image 
with no preprocessing is clearly seen from the 740 nm image of first row in Fig. 4. Both 
manual and automated methods were able to improve wavelength consistency by removing 
outlier measurements from the data set. The automated method provides similar 
reconstruction results as the manually processed ones with only minor differences. 
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Fig. 3. Reconstructed absorption maps of a benign breast lesion obtained at 740, 780, 808 and 
830 nm with no preprocessing (1st row), with manual data selection (2nd row) and automated 
data selection (3rd row). Each slide is 9 cm by 9 cm reconstructed at the center depth of the 
lesion. Images from other depths were not shown. Vertical bars are absoption in cm−1 unit. 

 

Fig. 4. Reconstructed absorption maps of a malignant breast lesion at 740, 780, 808 and 830 
nm with no preprocessing (1st row), with manual data selection (2nd row) and automated data 
selection (3rd row). Each slide is 9 cm by 9 cm reconstructed at the center depth of the lesion. 
Images from other depths were not shown. Vertical bars are absorption in cm−1 unit. 

The corresponding ultrasound images and the calculated total hemoglobin maps obtained 
by both manual and automatic methods along with calculated total hemoglobin maps with no 
outlier removal and data selection are presented in Fig. 5 for the benign and malignant cases. 
The lower reconstructed absorption at 740 nm of the malignant case with no data selection 
caused wavelength inconsistency and reduced the calculated total hemoglobin concentration. 
It can be seen that both manual and automated methods have improved wavelength 
consistency and better malignant to benign separation by reducing the effect of saturated, 
noisy and outlier data. The HbT concentrations are also comparable between manual and 
automated methods. 
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Fig. 5. Ultrasound image (1st column) and total hemoglobin map calculated with no data 
selection (2nd column), with manual data selection (3rd column) and automatic data selection 
(4th column) of the benign (top row) and the malignant breast lesion (bottom row) 
reconstructed with automated data selection method. Each slide is 9 cm by 9 cm and vertical 
bars are hemoglobin concentrations in uM unit. 

To compare manual and automated methods statistically, both have applied to the data 
sets collected from 20 patients (10 malignant and 10 benign). The maximum reconstructed 
absorption coefficient with each method was calculated. The mean value and the standard 
deviation of the maximum reconstructed absorption coefficient for malignant and benign 
groups along with the ratio of the mean values are presented in Table 2. The proposed 
automated data selection and outlier removal method shows slightly higher malignant to 
benign ratio of all wavelengths due to improved data selection. 

Table 2. Comparison of maximum reconstructed absorption coefficients of malignant 
and benign groups using manual and automated data selection method 

Maximum reconstructed absorption with manual data selection (cm−1) 

Malignant group Benign group Ratio 

740 nm 0.22 (0.05) 0.11 (0.03) 2.02 

780 nm 0.24 (0.05) 0.13 (0.04) 1.88 

808 nm 0.24 (0.05) 0.14 (0.03) 1.74 

830 nm 0.24 (0.04) 0.12 (0.04) 1.96 

Maximum reconstructed absorption with automatic data selection (cm−1) 

Malignant group Benign group Ratio 

740 nm 0.209 (0.06) 0.10 (0.03) 2.06 

780 nm 0.22 (0.06) 0.09 (0.03) 2.53 

808 nm 0.23 (0.05) 0.09 (0.03) 2.57 

830 nm 0.24 (0.06) 0.10 (0.03) 2.47 
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The total hemoglobin concentrations for all 20 patients are calculated using both manual 
and automated data selection methods. Table 3 shows the comparison of the mean and the 
standard deviation of the maximum total hemoglobin concentration reconstructed by both 
methods as well as the ratio of the average HbT concentration between malignant and benign 
cases. Figure (6) shows the box plots of the reconstructed HbT concentrations of malignant 
and benign cases. The results indicate a slight increase of the malignant to benign ratio of 
HbT from 2.01 to 2.55 by using the automated data selection method. 

Table 3. Comparison of maximum reconstructed absorption coefficients of malignant 
and benign groups using manual and automated data selection method 

Maximum reconstructed total hemoglobin concentration (μM) 

 
Malignant group Benign group Ratio 

Manual Data selection 115.38 (20.90) 57.28 (12.38) 2.01 

Automatic Data selection 112.31 (25.06) 43.97 (13.31) 2.55 
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Fig. 6. Comparison of maximum total hemoglobin concentration reconstructed with both 
manual and automated data selection methods for 10 malignant and 10 benign cases. Vertical 
axis is the total hemoglobin concentration in μmol/Liter. 

5. Discussion and conclusion 
In this study an automated pre-processing method for imaging-guided DOT is introduced. 
This method combines multiple data sets obtained from a normal breast which is used as a 
reference and implements outlier and saturation data removal, and linear fitting to form a 
robust compound set of reference measurements. Because the reference site does not have 
lesions inside, the location of the probe relative to the imaged area is not as critical as lesion 
site. Therefore, multiple reference data sets obtained from slightly different positions can be 
combined and used as the inputs of the automated compound reference selection method. On 
the other hand, in the affected breast, due to the presence of the lesion, the described outlier 
removal and compound data selection method is not appropriate. Instead, a perturbation 
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filtering method, based on simulations, is introduced to eliminate the outliers and inaccurate 
data due to measurement errors. 

The clinical results using the automated compound reference selection method were 
compared with the manually processed results. An experienced user performed the manual 
outlier removal and data selection after the imaging session and the best manually selected 
data sets have been used for the image reconstruction to compare with the automated method. 
Although the results calculated by our experienced user shows high significance for 
malignant and benign classification, the proposed automated compound outlier removal and 
data selection method outperforms the experienced user without the need for user 
interactions. On average, an expert needs about 15 to 20 minutes to perform the outlier 
removal and data selection manually, while the automated method takes about 20 seconds 
using a typical dual core computer of 2.3 to 2.8 GHz speed. T-test is performed on the total 
hemoglobin results obtained from each method and the test shows p-values of less than 0.001 
in both cases which indicates strong statistical significance between malignant and benign 
groups. Although both methods provide strong statistical significance between malignant and 
benign groups, but the ratio for malignant to benign has been improved with the automated 
method. In particular, the ratio of malignant to benign lesions has been increased from 2.01 
using manual data selection to 2.55 using automated data selection method with about 27% 
improvement. 

Although our automated compound data selection method is introduced in the US-guided 
DOT approach, it can be readily applied to other imaging guided DOT approaches. In 
general, diffuse optical tomography relies on reference measurements, either reference data 
from a normal area of the same breast with lesions or a contralateral normal breast. The 
reference selected from a normal area of the same patient is considered the best healthy 
control because each patient has different background tissue optical properties depending on 
age, tissue composition, and menopausal status as reported by several research groups in the 
past. Some groups used average background tissue by excluding the tumor area in 
mammography guided or MRI guided diffuse optical tomography [12]. Some groups used a 
localized area of healthy tissue in the lesion breast [14] and some including our group used 
the mirror region in the contralateral breast [8,10,15]. Depending on the heterogeneity of the 
healthy tissue, the choice of reference area and the data quality of the area impacts the level of 
tissue contrast. The proposed automated robust reference selection method removes data 
outliers, rejects saturated and noise data, and performs a linear fitting if a linear model is used 
such as approaches using hand-held probes where semi-infinite boundary condition is 
applicable. Thus, the proposed automated reference selection method is applicable to these 
approaches to improve the reference data quality and reduce data processing time. This is an 
important step toward clinical translation and commercialization of diffuse optical 
tomography techniques. 

In conclusion, an automated compound data selection method is introduced. This method 
forms a compound set of measurements from multiple data sets and outperformed the manual 
method in two different aspects. First, this method is able to eliminate the effect of inaccurate 
and noisy measurements by combining multiple data sets and improves the differentiation 
between malignant and benign cases. The results show improved differentiation between 
malignant and benign lesions compared to the manual data selection. Second, this method 
makes outlier removal, data selection, and processing automated by removing the need for 
experienced users to perform the manual data selection and outlier removal. Utilizing the 
automated and compound data selection method, the data processing speed is significantly 
improved and the user dependency of data processing is reduced. Future work includes 
automatic measurements of lesion boundaries in US images and input the measurements into 
image reconstruction. 
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